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For n =3, dis factorized into three factors Yi,Y2 and ys.
Ifyy =z and y,y3 =d/z , then
S =min {yi +y,+y3}= min {z+f;(d/2)}

Proceeding likewise, the recurrence relation forn = i becomes
f,~(d)=021in {z+f,-_,(d/z)},i=2,... ,n.

z<d
Now proceed to solve this functional equation as follows :
fild)=d.fid)=_ min J z+d/z} =Nd +d/Nd =2Nd (by calculus method)

fid)= orsnzils]d { z+£(d/z) } =orsnzlrsljz +2V(d/z)}=d"* + 2N(d/d"?) = 3d"3 and so on.

By induction hypothesis, assume forn = m

fuld)=md"™,
Now, the result can be proved for n = m + 1 as follows :

fuei @)= min {z+f,(d/2)}= min (z+mV(d/9"™)
=(m+1)d"/m+D (by calculus method)
Hence the optimal policy will be
@, d"", ..., d"" with f(d)=nd""
Example 17. Solve the following problem using dynamic programming :
Minimize z = ylz + y22 +...+ y,,z, subject to the constraints

Y1Y2Y3 .- Ya=b,and y;,y;,y3,...,y,20.
Solution. Letf,(b) be the minimum attainable sum of given n terms.

Forn=1, fib)="min (£} =b* (1)
z=
Forn=2,lety; =z, y,=b/z. Then

L) =min {y} +y7} = min {2 +f(b/2)%). .(2)

0sz<h

Sincef(b) = b* , therefore fi(b/2)=(b/ z)z. Consequently,

= mi 2
Hb)= Olsnzuslb (" + B/} ...(2b)
Similarly, forn =3, f2(b)=_ min {z2 +1 (b/2)}. -(3)
0<z<bh

by using the principle of optimality.
Thus, the functional equation for this problem becomes
f®)= min (2% +f,_,(b/2)). - (4)

To find the optimal policy :
From eqn. (2a), LHb) = 0 ng ) {z2 + (b/z)z}.
A

2
Take F(z) = zg +(b/ z)2 , then % =2z- %- =0 [for maximum or minimum of F(z)]
F4

2
bl/2 bl/ )

whichgivesz=b"? y; =b"?  y, = b/7=
. d*F, o L
Since -d—2 is + ve, indicating F(z) is minimum.
2

A]SO,ﬁ(b) = (bl/2)2 + (bl/2)2 =2b.
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Hence, optimal policy is : 6", 6" ; fo(b) = 2b.

Again, from (3) fib)=  min b{z2 +£,(b/2)}

Since fy(b) = 2b => fo(b/z) = 2 (b/z), therefore
fib) = min (Z+2 (/).

Let F(c) = Z+2 (b/z), and proceed as earlier to obtain the minimum of F(z) for z= b'”.

Therefore, fy(b)= (") +2 ;f’ﬁ =3. b3 = (b + (B + P

whichindicatesy, =y, =y3 = b2,
Hence, optimal policy is w2, b3, b falb) = 3?3,
Continueing in this manner, the optimal policy for general n will be obtained as
GV BV . b™, and F(b) = (6" + (6"") + ... + n times = nb™".
Example 18 (Discrete Variables). Solve the following problem using dynamic programming.

Maximize z= y,z + y22 + y32 , subjectto yy y, y3<4,wherey,y2,ysare positive integers.’
[JNTU (Mech. & Prod.) 2004]

Solution. First, define state variables as
S3=y1y3$ 4, $1=5/Y3=Y1)2, 1=/ V2=Y1
and proceeding exactly as Example 11 to obtain the solution from the following tables.
Stage returns : #(y)) = yf J=1,23

yi I 2 3 4
LoD 1 4 9 16
Stage transformations : s;-1= 87y, /=2, 3
¥ 1 2 3 4
§i
1 1 p— J— —_
2 2 1 —_ —
3 3 — 1 —
4 4 2 — 1
Recursive Operations
S Fy(s1)
1 1
T2 4
3 9
4 16
H(2) Fi(s1) =fi0n) Fa(s2)
»2 1 2 3 4 1 2 3 4
82
| 1 — — — 1 — — — 2
2 | 4 —_ — 4 1 — -_ 5
3 1 — 9 — 9 —_ 1 — 10
4 | 4 — 16 16 4 — 1 17
£03) Fi(s7) F3(s3)
y3 1 2 3 4 1 2 3 . 4
53
1 1 — — —_ 2 —_ — — 3
2 1 4 — — 5 2 — —_ ,
3 1 — 9 — 10 — 2 —
4 1 4 — 16 17 — —
T

5
hus, the.required solution is givenby : y; = 1,y2=1,y;=4, max z=18.
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EXAMINATION PROBLEMS
1. Findthe minimum z=x + %o + X3 + ... + Xn, When x1ex3 ... X,=d, and x;, X, X3,...,X20.
2. Use the principle of optimality to solve the problem:

N
Minimize z= ‘}:‘ X' subjectto xyxoxs ... xy=r, 21, i=1, 2,...,N,
C =

where r2 1 and o > 0 are given fixed numbers.

| 33.9. MODEL V: SYSTEM INVOLVING MORE THAN ONE CONSTRAINT B

Dynamic programming models discussed so far involve only one .constraint apart from non-negativity
conditions. In fact, the dynamic programming method can be applied to problems involving more than one
constraint also. In single constraint problems, there has to be single state variable for each stage, while in
multi-constraint problems there has to be one state variable per constraint per stage. The structure of problems
is of such type that sometimes it is possible to reduce the number of state variables. The stage transformation
becomes more and more complicated with the increase in number of constraints and consequently the state
variables. Large number of constraints can almost be a forbidding computational burden on the dynamic
programming method. Fundamental concepts of the procedure will remain the same.

Example 19. Maximize z = y13 + y23 + y33 » Subject to the constraints y; +y, +y; < 6, Y1y2ys < 6, where
Y12 and y3 are positive integers.
Solution. First define two sets of stage variables as follows :

S3=y1+y2+y3 L=y1y2y3
5:=83-y3=y1+y, L=8/y3=yy,
SI=S-y2=y h=t/y=y

Obviously, feasible values of y;are 1,2,3 and 4.
For stage j = 1, stage transformations will give the following possible values of s; and ¢,.

Y1 Sy ]
1 ' ‘ 1 1
2 2 2
3 3 3
4 4 4
Forj =2, 3, following table gives the transformations :
Si-1=Ti 1G5, %), ti-1=T;_1(t;, y)
Yj j-1,4-1)

(s, 1) . 1 2 3 4
an ©.1 (=-) (=-) -=-)
2.2) (L,2) ©1n (=-) =-)
(3.3) @3 - 1,-) (V9] ==
4,4) 3.4 22 1,-) (V)]
5,5) “4.5) 3.-) 2,-) (4,-)
(6.6) (3.6) 4.3 3.2) 2,)

In order to preserve the validity of constraints it is not necessary to consider s; , ¢; > 6. Since fractional and
negative integral values are not considered, so these are denoted by dash (- ) in above table.

Optimizations
Stagel. Fy(s;, 1) =y,
" N n Fi(si,n)
] ! ! l
2 2 2 ;
3 3 3 27
4 4 4 &
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Stage2. Fy(s;,%)= max [ys + Fy(sy, 1))
2

2 5 n Fi(s1.0) | y2+F (s1.1) 5 ) fr(s2, 1)
1 1 1 i 2 2 1 2
2 2 8 9 3 2 9
3 3 27 28 4 3 28
4 4 64 65 5 4 65
2 1 1 1 9 3 2 X
2 2 8 16 4 4 16
3 3 27 35 5 6 35
3 1 1 1 28 4 3 x
2 2 8 35 5 6 X
4 | 1 1 65 5 4 X
Stage 3. F3(s3 , t3) = max [y5' + Fa(s2 ,1,)]
Y3
y3 $2 n Fy(s2.8) | y3 4+ Fy(s2.0) 53 5] Fi(s3,83)
(1] 2 1 2 3 3 1 3
3 2 9 10 4 2 10
4 3 28 29 5 3 29
4 4 16 17 5 4 17
5 5 65 66 6 4
5 6 35 36 6 6 36
2 2 1 2 10 4 2 x e
3 2 9 17 5 4 x
4 3 28 36 6 6 X
3 2 1 2 29 5 3 X
3 2 9 36 .6 6 X
4* 2 1 2 66* 6 4 66*

Now, proceeding in the backward direction, optimal decisions are
01,y2,y)=0@,1,)or(1,1,4)0r(1,4,1).

Hence, max Fa(ss , t3) = 66 for (s3 , t3) = (6, 4).

Now we shall give a mathematical formulation of general (multistage) dynamid programming problem.

r33.1 0. MATHEMATICAL FORMULATION OF MULTISTAGE MODEL |

Let there be a system in an initial state described by a vector sy. As a result of certain decisions denoted by the
vector d, this system finally reaches the state so as shown in Fig. 33.5. The rectangle represents the
transformation Ty functionally as
so=Tp(sy,d) ...(33.16) ld
and sy is regarded as input and sg as the output.
Suppose a real valued function input
Yy (sy,d) (3317 Tn
called the objective or the return function, is associated with the N
transformation Ty. |
The objective is to determine a given input sy to optimize lw"
(minimize or maximize) Yy subject to the constraint (33.16). The
transformation (33.16) is a constraint on d with prescribed values
of sy and sg.
If it is possible to decompose the problem into j number of stages, 1 < Jj S N, thens; will represent the input
at the jth stage. Starting from the initial state sy, the system is considered to pass through the successive states

Output
S

Fig.33.5
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SN-1,8N-2, --- » S2 S}, before reaching the final state sp. Thus each state s; _ | is the function of the input state
s; and the decision vectord; , i.e.
§i_1= T] (Sj ,d]) (33.18)
It is also assumed that there exists a stage return function
fisj ., d) : .(33.19)
at the jth stage. Also, the return function Wy is some function of stage returns, i.e.
‘I’Nz‘l"N(fN 7fN—l > eee y,fz ',f]) ..(33.20)
The return function can also be expressed in the form
\"N=‘VN(SN9dN’dN-| 3 oo ydl) ...(33.21)

by virtue of (33.18) and (33.19). Clearly, (33.21) is equivalent to (33.17).
Now, the situation is diagrammatically explained in Fig. 33.6, which is the serial multistage model.

[ ! I

8 8 ' 8; 8 ]
2, Tw L Ta e i
lf” lfi . lf1
Fig. 33.6

It is concluded that under certain conditions the problem of optimizing Wa(sy,d) subject to
so=Tp(sy, d) can be transformed to a serial multistage problem of determining sequentially optimal
decisionsd;*, 1 <j <N, which optimizes Yn(fw » fN—1» -« »f2 s f1)-

From the examples discussed so far, it would seem to suggest that if yy is of the form

Yv=fnofy-10fn-20f0f; ..(33.22)
where o represents a composition operator indicating either addition or multiplication, then
Wn=fv-1 -(33.23)
where Yy_1=fv-10fn-20...0H0f; ...(33.24)
and then it may be possible to affirm positively that
FN(SN)= max WN(stdedN—l 3 see ,dz,d|)=max [fNO FN—l (SN—X)] ...(33.25)
dN,dN_],...,dz,J] i dN
where FN—] (SN—I) = max WN—I(SN—I ’dN-—l s eee ,dz, dl) (3326)
SN_1 s ,SZ.S]
The improved form of the return function (33.23) is called separability. If it is possible to separate all
YN, WnN-1 ... » Wasuccessively in this order, the recursive equation may be proposed,
Fis)= max fioFi_i1(si-1],25jsN ...(33.27)
/
with Fi(s)) = n‘:jaxf, ...(33.28)
1
subjectto si-1=Tjsj,d;),2SjsSN ' ...(33.29)

which may enable us to solve the maximum problem recursively.
Now, it is always a point of discussion whether this approach will always work or if not, what are the

conditions under which it works ? .
Following examples of failure will make the situation clear.

Counter Examples :

(i) Consider the function of the form y; =f3f> + fi

Now, this function is not separable in the order 3, 2, 1 because no matter how one define Y, (f; , f1). Itis not
possible to express 3 as f 0 Y, where o denotes either addition or multiplication.
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(ii) On the other hand, the function of the form w3 =f; + f; f; is separable, because it is possible to define
Y, =f7.fl‘9 Vi =fl
andthenys=f3+ ¥, ¥ = foy. :
(iii) As another example, the function of the form y, = f; + fif, + f; is not separable in either direction.
Hence, all functions of the form™
YN=fnofn-10fn-20...0f0f;
are not separable.
(iv) Maximize 3 = f2f5fi where fy=y; , =y, ,fi =y, , subject to
1<y;£3,-2<y,5-1,-1<y;<0,
The solution is : Max y; = 6.
Now adopting the dynamic programming approach :
max 3 =Fy= max (73F,) , where F, = max 02, Fi=fi=y.

Proceeding in backward direction o
Fy=max (yy)) =—1, F3=max (- y;) = 1
Y2 ¥3

which is wrong.
Hence, the recursive optimization may not work, even though the function is separable.

Q. Setup the recursive relation, using dynamic programming approach, when an N stage objective function is to be
maximized. [Meerut (M.Sc. Maths.) 90}

33.11. DECOMPOSITION |

Definition 1. An optimization problem is said to be decomposable if it can be solved by recursive
optimization through N-stages, at each stage optimization being done over one decision variable. In other
words, validity of recursive equation (33.27) implies decomposability.
The monotonicity of a function is also being defined foruse in the subsequent discussion.
Definition 2. The function f (x , y) is said to be monotonic non-decreasing function of x for all feasible
valuesof y if : .
X1 >x%=fx,¥) 2fx; . y)

for every feasible value of y. It is said to be monotonic non-increasing if :
X1 > %= f(x,y)Sf(x,y)

for every feasible value of y.

Theorem 33.1. In a serial double-stage optimization problem if :

(i) the objective function y, is a separable function of stage returns fi(s, , dy) and fy(s; , d;), and

(ii)  is a monotonic non-decreasing function of f, for every feasible value of f; ,
then the problem is decomposable.

Proof. As discussed in Sec. 7.10, the objective function y,(f; , f;) is separable ifya=Hoy,,y1=f.

Suppose this condition holds, and further v, is monotonic non-decreasing function of f; for feasible
values of f5.

The theorem is considered for the maximization case and similar treatment may be adopted for
minimization also.

As introduced in Sec. 33.10, the equivalence of the following expressions is given by

Fy(s;) = Max Yi(s2,d; ,dy) ..(33.30)
: 1.8,

= max [f;(sy,d,) o fi(s;,d))] ..(33.31)
dl ,d2
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= dr?agz sz, d)) 0 fi(s; . 43, dy)] .(33.32)
Using the transformation relation
‘ $1=F; (s, dy). . .(33.33)
Also, Fi(s) = rrbaxﬁ(s, ,dp) = tr&axf,(sz ,dy, dy). ...(33.34)
1 1
Let Fy*(s)) = max = Ualsi . dy) o Fi(sy)] ..(33.35)
2
= max lfals2 . dy) o n‘l]asz(Sz ,dy,dy)] -.(33.36)
2 1 ’
Now comparing (33.32) and (33.36)
Fy > (s3) 2 F; (s). ’ .(33.37)
If “tllaxfi(sz 4y, dy) =fi(sy,dy, dy*), ..(33.38)
|
then fi(s2,dy,d)) <fi(s3,d;, dy*).

Since y; is a monotonic non-decreasing function of f; , inequality implies,
Vasz, dy, d)) SYy(s; . dy, dy*)
or \Vz(sz ’ d2 ’ dl*) 2 n‘llax Wi(32 s dz s d]) ...(33.39)
1

Now, from (33.36) and (33.38)
Fyx(s) = max [fa(sz2, d3) 0 fi(s2, 4, , dy*)]
2 .

= n:lax Yo(s,,d;y, dy*), [from (33.30) and (33.39)]
2
2 max max (s, ,d,, d;) [from (33.39)]
d, d,
. = Fy(sy) [from (33.30)] ...(33.40)
From (33.37) and (33.40)
Fy(sy) = Fy*(sy) or Fy(sy) = max [f2 0 Fi(s1)], (from (33.35)]

which along with (33.34), are equations (33 27) and (33 28) for N = 2. Thus, by definition, the maximization
problem is decomposable.

Hence, the theorem is proved.

The following theorem is a direct consequence of Theorem 33.1 and hence no further proof is needed. In
fact, it is an extension to N-stage optimization problem. , f

Theorem 33.2. Ifthe real valued return function Wp{fyy , fx-1 , ... » ) satisfies :

(i) The condition of separability, i.e.

Ynfv o fv-1s s f)=fnoWn-)

where Wy _; (fy-1 > ... , /i) isreal valued, and

(ii) yyis monotonic non-decreasing function of Yy _; for every fy , then yy is decomposable, i.e. -

ax ‘I’N(va---,fl)=H';aX[fzv0 max ‘I’N 1]

dy,....d -dy dy_1, 2
Theorems 33.1 and 33.2 prove that the monotonicity is the suﬁ‘ic:ent condition for decomposability. To
prove that it is not the necessary condition, following example, is sufficient.
Example. Maximize ¥, = f5f| , wherefi =y, , o=y, ,subjectto1 <y; <4;-1<y, < 1.
Obviously, the solution is max y, = 4. Since Y, decreases as f; increases for negative f; , Y is not
monotonic non-decreasing function for every value of /5, "
In order to show that the correct answer is obtained by dynamic programming approach.
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max (f,f;) = max (f, , max f;) =max (4f,) =4.
Y20 Y2 N Y2

1. State a sufficient condition for a two-stage optimization problem to be solved by dynamic programming.
2. Deduce the dimensionality in dynamic programming. : [Delhi (OR) 93]
3. Discuss the purchasing problem and prove the existence and uniqueness theorem.

Q.

I 33.12. BACKWARD AND FORWARD RECURSIVE APPROACH

The recursive approach in which s; is the input and s; _ ; is the output for the jth stage, where stage returns are
expressed as functions of stage inputs, and the recursive analysis proceeds from stage 1 to stage N, is
discussed earlier. This type of approach is called the backward recursion on account of stage transformation
function being of the form s; _; = T(s;, d;). The backward recursion can be conveniently used only when
optimization with respect to a specific input sy is needed, because in such a case the output sq is not taken into
account. ,

To optimize the system with respect to a prescribed output s, it would be naturally convenient to reverse
the direction. Treating s; as the function of s; _; and dj , and substitute s;=Tj (s;-;,d;), 1 <j <N, and also

express stage returns as functions of stage output and then proceed from stage N to stage 1. Such an approach is
called the forward recursive approach.

In this case, input s, and output s; are prescribed parameters. Both of these parameters will be retained
during analysis, and the optimal solution will then be a function of both the parameters. In multistage
problems, there is no difference in applying these two approaches. Inputs and outputs both are fictitious

concepts and are therefore interchangable. The problem can be solved in any direction by slightly modifying
the notations.

In non-serial multistage systems which are important in automatic control systems, stages are not
connected in series, but branches and loops may also occur therein. While dealing with such system by the
dynamic programming approach, the difference of forward and backward recursion procedures becomes
much considerable. Therefore, the forward recursion formulae are given.

Let the return function Wy, =(sy, So, dy, ... , d;) be a function of stage returns f;=(s;, s;, d;) in the
form

Vi=fvofy-1...0f0f.

assuming the stage transformation function as

sj=Tj(s;-1 . d).

Define Fi(sj-1) = max d.(fN ofv-10..0p

N> oo @y

to postulate forward recursion formulae as
Fi(s;_) = max ViGsi-1,dpoFj(sp], 1<jsSN-1
J

Fy(sy-1)=Fy(sy-1,dn)
Using these notations, the required optimum value of \; is denoted by F)(so) which can be obtained
recursively through stagej=N-1,...,2, 1.
The forward recursion approach is explained by solving the numerical example which is solved by
backward recursion approach earlier.

Q. 1. Describe the recursive equation approach to solve the dynamic programming problem. [Raj. Univ. (M. Phil.) 92]

2. State Bellman's principle of optimality. Explain the forward and backward recursion method.
[Meerut 2002; Delhi (OR) 93)
3. Whatis dynamic programming retation ? Describe the general process of bactward recursion.  [IGNOU 2001 (June)]

Example 20. Minimizez = y,2 + y22 + y32 subjectto yy +y,+y3215;y,,y2,y320
by forward recursion. [Kanpur 2000; Agra 97; L.A.S. (Main) 95; Raj. (M. Phil) 91}
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Solution. As usual, define state variables and put stage transformation as
sy=Sg+y, 2=51+y2, S3=Sz+}’32 15.
In this example, the forward recursion equation becomes

fi(sj-) =min by +Fja1 (5)1,7=2,1
J

with F3 (s =y3 =(s3—59"
Therefore, Fy(s)= n;in [y22 + F3(s9)1= Ir;in [yz2 +(s3— 52)2] =min [}’22 +(s3—851— )’2)2]
2 : 2 Y2

Using calculus to find minima of the function of one variable :
Fyls1) = (s3 = 51)°/2, for yp = (53~ 51)/2.
Also, Fi(so) = min [y + V2 (53~ 50~ 31)’]
"

Again, using calculus, y; = (53—~ s0)/ 3, and therefore, F (so) = (53— so)z/ 3.

Since so =0, 53 2 15, F (so) is minimum for s3 = 15 or yj=y;=y3=35.

Here it is observed that the final minimum is obtained as a function of input s and the output so. Number
of significant stage variables are now increased to four (instead of three). Thus, to solve the input problem by
the forward recursion, number of state variables are N + 1 instead of N, so is also appearing in the problem.
However s, may be eliminated from the final result by considering that the result to be optimum with respect to
sy, and so will adjust accordingly. Secondly, if the problem is of given out-put So but solved through
backward recursion, the input sy will also get involved which can be removed from the final result. Finally,
when input and output are given as fixed, both forward and backward recursions are equally good.

EXAMINATION PROBLEMS
1.  Find the minimum value of 2. Find the maximum value of
z=y12+y22+...+y,? z=x12+2x§+4x3
subject to the constraints subject to the constraint
YiYe¥a ... Ya=¢C X1 +2X+ X3 8,
andy;20forj=1,2,...,n X1,X%X,%20.
{Kanpur 96; Rohil. 94; Meerut 91] [Meerut (Maths) 99]
[Ans. (", &7, ..., & Mwith f,(0) = nc*’"] [Ans. (8, 0, 0) with £5*(8) = 64.]
3. Find the minimum value of 4. Find the maximum value of
X2+ 2xF + 4x3 ' 2=-x2-2XF +3%+ X
subject to the constraints; subject to the conditions
X1+ X2+ X3 28and xq , X2,X320. Xy +Xp+Xa<S1and X1, X2, x320.
[Ans. (2, 2, 2) with 3*(8) = 20.} [Ans. (0, 12, Vo) with K* (1) = %.]
8. Use method of dynamic programming to minimize u12 + uzz + 032 subjectto uy + Lo+ s 2 10, Uy, U2, Us 20.
[Hint. See solved Example 20.] [I.A.S. (Maths) 85]
[ 33.13. APPLICATIONS OF DYNAMIC PROGRAMMING J

33.13-1 Application in Production

Dynamic programming approach can be effectively utilized in production systems. An example is given below.
Example 21. Suppose therearen machines which can perform two jobs. If x of them do the first job, then they

produce goods worth g(x) = 3x and if y of the machines perform the second job, then they produce goods worth

h(y) = 2.5y. Machines are subject to depreciation, so that after performing the first job only a(x) = x/3 machines

remain available and after performing the second job b(y) = ¥3y machines remain available in the beginning of the

second year. The process is repeated with remaining machines. Obtain the maximum total return after 3 years and

also find the optimal policy in each year. [Delhi (OR) 92; Agra 93, 92]
Solution. Here first, second and third year are considered as period 1, 2 and 3, respectively.
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Let
*;= number of machines devoted to the job 1 in ith period.
yi= number of machines devoted to the job 2 in ith period.
s; = total number of machines in hand (available) at the beginning of ith period.
Ja(s) = maximum possible return when there are n periods left with initial number of available machines
being ‘s’.
‘The problem is now taken up through the use of backward recursion approach. &
Step 1. Consider third year first, then s, is the number of machines available at the beginning of the year.
"~ Thus
fi(s3) =max [3x; +2.5y] ..(3341)
%3,¥3

subjectto x3+y3<s; and x320,y,20 ..(3342)

It is obvious from linear programming that extremal values of a linear function occur at corners of the

constraint set. Since the function fi(s;) = 3x3 +2.5y;is linear in x3 and y; ,
therefore maximum occurs at B (53, 0) (see Fig. 33.7). Thus

Si(s3) =353+ 2.5x0 =355 ...(3343) 3
Hence, optimal decisions are : A
x3* =53, y,* =0 and fy(s;) = 35, .(33.44) ©. 59
Step 2. Now consider second year. Then number of machines available at
‘the beginning of this period is s, , and
2
fi(s5) = max [ 3%, + 2,59, +1; [ﬁ +22 ]J : (33.45)
X2+ Y2 . 3 3 [e) X3
(since x; and y, machines are utilised for two jobs, respectively; x,/3 and (53, 0)
2y,/3 machines will remain available at the beginning of the next year). Fig. 33.7
Thus, by definition of f; as given in (33.43), we have
X 2y Y2
Sa(s2) = max| 3x,+ 2.5y, +3| ==+ == ...(33.46a)
212 3 3
or Ja(s2) = max [4x; + 4.5y,] -(33.46b) (0, s,)
*2+Y2
subject to the constraints :
X2+y,Ss; and X, 20, y,20 ...(33.47)
Again, the objective function is linear and maximum occurs at the corner
A (0, 53) (see Fig. 33.8). Thus ) 7o) BNC X,
fi(s)) =45 s, ..(33.48) (s, 0)
and optimum decisions are : '
x*=0 and y,* =5, ..(33.49) Fig-33.8

Step 3. Now in first year, the total number of available machines at the
beginning of the period is s, , and

2
fa(sl) = max [ 3x1 + 2.5}’] 'f'fz ﬂ' + -J—l ]
X0 3 3

x; 2
=max[3x| +2.5y, +4.5[ Ly ]

X1+ 21 3 3
[using definition of f, as given in (33.48)]

=max [4.5x; + 5.5y,]
X1

Hence,
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fls) = ;na;( [4.5x; +5.5y] ...(33.50)
12
subjectto  x; +y; <5, and x; 20,y,20 ...(33.51)

As explained earlier, objective function is linear. Thus, maximum occurs at the corner A (0, n)
(see Fig. 33.9). '

Therefore,
' f(s)=f3(n)=5.5n ..(33.52)
Thus, optimal decisions are
x*=0,y*=n ... (33.53)
and =Wy =Ynx*=
Therefore, y*=5*=2%n
Also, s3*=Wy*=%n

x* =s3*=4n, y;*=0.
TI;I;(I)WI; ;hc complete solution of this problem is summarized and optimal policies for three periods are given
in Table 33.3. )

Table 33.3
Period | Period 2 Period 3
n*=0 . xn*=0 x3* =4n/9
nt=n yo*=2n/3 y3*/0

Maximum possible return= rg(n) =55n.

Q. Formulate a manpower loading problem ds a dynamic progra_mr;'ling problem,.

33.13-2. Application in inventory Control

- Deterministic inventory models were considered in Chapter 2 (Unit 4) for constant demand of an item. If
models are considered in which the demand is known exactly but different in each period, the solution of such
models become somewhat more complicated. Such inventory models may be easily solved by using the
dynamic programming technique. The procedure is explained by the following example: -

Example 22. A man is engaged in buying and selling identical items. He operates from a warehouse that
can hold 500 items. Each month he can sell any quantity that he chooses up to the stock at the beginning of the
month. Each month, he can buy as much as he wishes for delivery at the end of the month so long as his stock
does not exceed 500 items. For the next four months, he has the following error-free forecasts of cost sales

prices:

Month : i 1 2 3 4
Cost ¢ 27 24 26 28
Sale Price : Pi .28 25 25 27

If he currently has a stock of 200 units, what quantities should he sell and buy in next four months ? Find
the solution using dynamic programming. [Meerut (Maths.) 99, 96; Delhi (OR) 83, (M.B.A.) April 85; Rohilkhand 90]
Solution. Here first, second, third and fourth month are denoted as period 1,2, 3 and 4 respectively.

Let

x; = amount to be sold during the month i pi= sale price inthe month i
y; = amount to be ordered during the month i c; = purchase price in the ith month, and
b= stock level in the beginning of month i H = warehouse capacity.

Let f,(b,) be the maximum possible return when there are n months to precede and initial stock is b,.
The problem will be taken up as backward, i.e. consider i = 4 firstand i = 1 last.
Thus fl(bn) = max [ppx, — Cnynl

X+ Yn
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whereb, 2 x,, b, ~x, +y, S H.

Also, A fn(bn) = ;na;( (Prxn — cyn+fuo1 (bn —Xp+y,)]
Forn=1, fi(by) = max [pyx; — ey,
X1-N
Obviously, y1=0,x=b,
Therefore, Silb)) =piby=27b; ,and by =by ~x,+y,
Forn=2, fa(b2) =£1"‘1;‘2 [P2x2 = coya + fi(by ~ X3 + y3))

where y, S H~ by + x, < 500 — by + x5
Therefore, f,(b;) = max [26b, - x; + 500] = 26k, + 500 (taking x, = 0 for maximum)
X2

and b2 =b3—'X3 +y3.
Forn=3,
fi(b3) = max [P3x3 = c3y3 + o (b3~ x3+ y3)] = max [25x; - 24y3 + 26 (b3 — x5 + y3) + 500]

3.3 353

= max [26b3 - X3+ 2y3 + 5w],WhCre y3 <500 - b3 +x3

X3,)3

= max [26b3 - x3+ 2 (500 - b3 + x3) + 508] max [24b3 +x3 + 1500]

X3 X3

=25b3+ 1500 (since b; 2 x5 , therefore b3 = x; for maximum)
But, by = by ~ x4 + y4. Now, taking n = 4,
Ja(by) = ;na;( [Paxs = cays + f3(bg — x4+ y4)]
4+ )4

= max [28x, — 27y +25 (by — x4+ y¢) + 1500] = max [25b, + 3x — 2y, + 1500]

%4+ Y4 X45)4
= [25b4 + 3b4+ 1500] (since y; = 0, x4 = b, for maximum)
= 28b4 + 1500.
It is given that
b4=200 X4 = 200,)’4:0.
Therefore, b3=200-200+0=0 x3 =0, y3 =500,
by =0-0+500 =500 x=0,y,=0,
b1=500"0“0=500 x1=500,y1=0.
Thus, the required solution is givenin Table 33.4.
Table 33.4.

Month : 1 2 3 4
Purchase : 0 500 0 0
Sales : 700 0 500 500

Maximum possible return = 28 x 200 + 1500 = 7100. Ans.

Q. Discuss the dynamic programming approach to solve an inventory problem with illustration.

33.13-3. Application in Linear Programming. [Meerut 95]

As discussed in Unit 2, the general linear programming problem i :
Maximizez = cyx; + cox%y + ... + C%,, ...(33.54)
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subject to the constraints apxtapxt.tax, <b;
Xy +apx+ ...+ (173% < bz
: : : : ...(33.55)
AmiXy + QppXy + ... + X, S by,
x20,x520, ...,x,20

This problem can be formulated as a dynamic programming problem as follows :

Let each activity, j (1, 2, ..., n) be a stage. The level of activity, x; (2 0), represents decision variables
(alternatives) at stage j. Since x; is continuous, each stage possesses an infinite number of alternatives within
the feasible region.

Since the linear programming problem is an allocation problem, states may be defined as the amounts of
resources to be allocated to the current stage and succeeding stages. This will result in a backward functional
(recursive) equation. Since there are m resources, stages must be represented by an m-dimensional vector.

Further, let (By;, By, ..., Bj) be the states of the system at stage j in accordance with the definition i.e.,

amounts of resources 1, 2, 3, ..., m, respectively, are allocated to stage j, J+1, ..., n Using the backward
recursive equation, let f(By; , By, ... , Bmy) be the optimum value of the objective function (33.54) for stages

(activities)j, j+ 1, ... ,n for given states Bijs Byjs oee s Bue

Thus,
FoBinsBans ovv s B = max_  [ex,], i=1,2,....m . ..(33.56)
0<a;x,<B;,
f]‘.(BU’ sz, see g ij)= max [ijj +f;'+1 (Blj-—a;jxj, coey ij-a,,,f-xj)] (3357)
0<a;x<B;
(i=1,2,....,m

forj=1,2,3, ..., n- 1, whereitis understood that 0 < Bij < biforalliand).

Thus, a recursive equation (33.57) is obtained and can be used to solve the linear programming problem
by the dynamic programming approach.

Example 23. Solve the following linear programming problem by dynamic programming approach.

Maximize z = 2x, + 5x; , subject to the constraints 2x, + x, < 43 , 2x, <46 and x20,x,20

[UNTU (Mech. & Prod.) 2004; Meerut 98]

Solution. Since there are two resources, the states of the equivalent dynamic programming problem can be
described by two variables only.

Let (B, , B,) describe the states j(= 1, 2).

Thus, forj = 2, we have

Bz, Bro) =) max, [5x] (33.58)
0s20,58,,
Since Xy < min [Blz, B22/2] andfz[ﬁ,z - X2 Bzz} = 5x2,
then F(Br2s Bao) = max f[Bi2 = %2, Baol = 5 min [By5, By,/2] (33.59)
2
and x* =min[B,,, Brn/2] ! ...(33.60)
Now fiBi1s B2y :65122?’5(3,,[2)(' + By = 2xy, By - 0))
0<0x, <B,,
=max_ [2x; +5min (B;; - 2x;, B,,70)] [by def. of f; from (33.59)]
0<2x,<By,
Since this is the last stage, then B;; =43, B,, = 46.
Thus x1<£Py1/2=21.5 and £,(B;; - 2xy, B21/2) = £1(43 — 2x;, 46/2)

= 2x; + 5 min (43 - 2x;, 46/2)
=2y +{5x23,0$x,$10 o
5(43-2x,), 10<x; <215
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20 +115,0sx, <10 (i) 43-2x,223=0<x,<10
= |- 8x; +21:5,10< x; £21-5 [(ii)43—2x,$23=>x1210 ]

Hence for given range of x; ,

fB11s B2y) =fl43, 46)
=max (2x; + 115, - 8x; +215)
Xy

= max [2(10) + 115, - 8(10) + 2151 =135 (at x;*=10)
=

To obtain x,*, we observe that
Brz=Bn—2x =43-20=23, Pp=P;-0=46
and x*=min[B,,, B2/2] = min[23, 46/2] = 23.
Thus optimal solution is given by z*= 135, x;* = 10, x,* = 23.
Alternative. Since there are two resources, the states of equivalent dynamic programming problem can
be described by two variables only. ‘

Let (u; , vj) describe statej (=1, 2). Thus,fo(uy , vo)= max  [5x,]
0sSx;Suy :

0 < 2X2 < vy
Since x, <min (uy, vo/2) and fo(x; | given u,, v,) then ,
Hluy , vp) = niaxﬁ_(xz | given u , vo) =5 min (uy,v/2) ' ...(33.59)
2

and x* =min (uy, vo/2) 3 ...(33.60)

Now, R = 2x; + —-2x;, v =0
ow Siluy, vy) OSr,‘;_lx?xSu,[ 1+ 1 vi— 0]

0< OXI < Yl
= max [2x;+5 min (4 - 2x;,v1/2)] {by definition of f, from (33.59)}

0<2x <y

Since this is the last stage, then u; = 43, v; = 46.

Thus, xS %u, =215,
and . Al givenuy,vi)=fi (x| given u; =43, v, =46)

= 2x; + 5 min (43 - 2x; , 46/2)

et 5(23),for0<x 10

1715@3-2x),for10<x S21.5
_ )2 +115, 0sx, <10
-{- 8x; +215,10<x; S21.5

Hence for given range of x; ,
: fluy , vi) =f; (43 ,46) = max (2x; + 115, - 8x; +215)
*

=max [2 (10) + 115, - 8 (10) +215] = 135
which is achieved at x;* = 10.
To obtain x,*, it is observed that up = u; — 2x; =43 -20=23,v,=v; -0 = 46
and x,* =min (4, v,/2)=min (23,46/2)=23.
Thus, the optimal solution is given by z* =135, x, =10, x, = 23.
This example shows that in comparison to simplex method it is too much difficult to solve a linear
programming problem by the dynamic programming approach.
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Example 24. Use dynamic programming to solve the L.P.P. :
Max z.= x) + 9x,, subject to the constraints - 2x)+x,<25,x, <11 5x;,x, 20.
[Meerut 96 BP, 93 P; Agra 55; Rewa (M.P.) 93]

Solution. The problem has two resources and two decision variables. The states of the equivalent
dynamic programming are f, jand By; forj=1, 2. Thus

J2 (Br2, B22) = max {9x,}
where maximum is taken over 0 < X $25and 0 < x; < 11. Thatis,

J2(Br2 , B2z) =9 max {x,} =9 max {25, 11} »
Since the maximum of x, satisfying the conditions of X €25 and x, < 11 is the minimum of {25and 11}.
Therefore, x,* = 11.

Now, fiBi1, Bar) = max {x; +£(By; - 2x, , By ~ 0)}
where maximum is taken over 0 < x1 £25/2. '

At this last stage, substitute the value of By, = 25 and Ba1 = 11. Therefore,
fi(25, 11) =max {x; + 9 min (25 - 2x, , 11)}
11, for 0< x,<7
25-2x;,for7<x,<25/2
x1+99, for 0< x;57
225 - 17x , for 7<x,<25/2
Since the maximum of both x; + 99 and 225 — 17x; occurs at x; = 7, therefore
f(25,11) =7 +9min (11,11)= 106, at x,* =7
X* =min (25 — 2x,*, 11)=min (11, 11) =11
Hence the optimum solution is x,* = 7, x,* = 11 and max z = 106.

Now, min (25 — 2x; , lI)={

Therefore, X1 +9min (25~ 2x, , 11) ={

Q.  Explain the concept of dynamic programming and the relation between ‘dynamic’ and ‘linear’ programming problems.
Show how to solve a linear programming problem by dynamic programming technique. [I.A.S. (Main) 79)

EXAMINATION PROBLEMS
Solve the following linear programming problems by dynamic programming :
1.  Maxz=8x, + 7x,, subject to the constraints : -
22X+ % < 8,5x; +2x; < 15and x;, X220

[Ans. x,* = 0, xz* = 7.5 and max z = 52.5] [JNTU (MCA Ill) 2004, (B. Tech.) 2003]

2. Maxz=23x;+5x, subjecttothe constraints: X1S4;X%56;3x+2x%<18; X, 22 0.
[Agra 99, 98; Rohilkhand 93]

[Hint. The problem consists of three resources and two dacision variables. The states of the equivalent dynamic

programming problem are (By;, Ba;, B3) for j=1, 2]

[Ans. x,* = 2, x,* = 6 and max z = 36]

3. Maxz=50x + 100x; , subject to the constraints : 4. Maxz =3x, + X , subject to the constraints :
10x1'+5g(2s2500, 4xy + 10x, £2000 21+ X256;X%S2; %<4 and x , X2 0.
X1+3%2 % <450,and x; , % 2 0. [Ans. x; = X, = 2 and max z = 8] \
[Ans. xi* = 187.5, x,* = 125.0 and max z = 21875) {Meerut 97P, 94; Delhi (OR) 93]
S. Maxz=3x; + 7x; subject to the constraints : 6. Max z = 2x; + 5x subject to the constraints :
X1+4x2<8, %<2 and x1,x20. 3x1+x52,;<3and x; , % 2 0.
[Ans. x; =8, x, =0; max z = 24) [Ans x; =3, ;=3 ; maxz = 21]

7. Solve the following linear programming problem by applying dynamic programing procedures. Explain the assumptions
you make :
Max z = 50x, + 100x, , subject to the constraints : 2x1+3x% <48, X1+ 3% < 42, x; + X, <21 and X1,%20.

[Ans. x; = 6, X = 12 ; max z = 60)
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8. Solve the following linear programming problem by dynamic programming technique :
Max. 5x; + 3%, subjectto x; £12,x;<8,2x +3x <36; X1, X2 2 0.
9. Usedynamic programming to solve :
Min. 3x; + 5x;, subjectto—3x; +4X2 <12, —2X1+ X% S2, 2X+3X 2 12, 0s xS 4, x222.
[Meerut 98 BP]

33.13-4. Application in Reliability

Following example is presented in order to demonstrate the application of dyanamic programming in
reliability. :

Example 25. (Reliability Problem) Consider m; i=1 i=2 i=3
the problem of designing an electronic device n a r L) r3 )
consisting of three main components. The three 1 5 2 7 3 6 1
components are arranged in series so that the 7 4 8 5 8 2
failure of one of the components will result in the 3 9 5 9 6 9 3

failure of the whole device. Therefore, it is decided
that the reliability (prob. of no failure) of the device can be improved by installing parallel (stand-by) units on
each component. Each component may be installed at most 3 parallel units. The total capital (in thousand Rs)
available for the device is 10. Following data is available :
Here m; is the number of parallel units placed with the ith component, r; is the reliability of the component and
c; is the cost for the ith component. Determine m; which will maximize the total reliability of the system without
exceeding the given capital.
Solution. Step 1. Formulation of the problem :
Let R be the total reliability of a system of n components arranged in series and m; parallel units per
component i (i = 1, 2, 3). Thus the problem s :
Maximize R = ryryry, subject to the constraint ¢, + ¢; + €3 <c,
where c is the total capital available.
Step 2. To obtain Recursive Relationships :
Let x; — defines the capital allocated to stages 1,23, ..,L
r{(c;) —reliability r;is a function of c;.
f{(x;) —reliability of components (stages) 1 through i inclusive, giventhat 0 < x; < c.
Since x; are the states of the system, the recursive equations are then given by
Al = max {ri(c))} form;=1,2,3
1

0< (4] < Xy
and filx) = max (rdc)- fioi(xi=c)} i=2,3, ..., and m; = 1,2,3.
i
0< C; < X;
Since m; and c; both are given in discrete units, the tabular computations are performed :
Stage 1
fikx) =r(c1) Maximum reliability
s mp=1 mp=2 my=3 Hitxy) my*
X rn=.51¢=2 n=.7.¢=4 n=.9c=

0 — — — - —

1 — — — — —

2 0.5 — — 0.5 1

3 0.5 — _ — 0.5 1

4 0.5 0.7 — 0.7 2

5 0.5 0.7 0.9 0.9 3

6 0.5 0.7 0.9 0.9 3

7 0.5 0.7 0.9 0.9 3

8 0.5 0.7 0.9 0.9 3

9 0.5 0.7 0.9 0.9 3

10 0.5 0.7 0.9 09 3
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Stage 2
Sx2) = raler) filxy — ¢3) Maximum reliability
5. my=1 my=2 my=3 falxm) my*
X2 r;=0.7,¢,=3 r=08,¢c=5 rn=09,¢c;=6
0 — — —_ — —
1 —_ —_ — — —
2 — —_ — —_ —
3 IX(=)=— — — — —
4 Ix(-)=— — —_ —_ —
5 Ix5=.35 Bx(-)=— — 35 1
6 Ix.5=.35 8x(=)=— Ix(=)=— .35 i
7 TIx.7=.49 .8x.5=.40 Ix(-)=— 49 1
8 Ix9=.63 8x.5=.40 9x.5=45 .63 1
9 Ix9=.63 8x.7=.56 9Ix.5=45 63 1
10 1x.9=.63 8x9=T72 9x.7=.63 .72 2
Stage 3
S3(x3) = r3(c3) folxs — ¢3) Maximum reliability
s my=1 my=2 m3=3 f3(x3) ms
X3 r3=06,c3=1 r3=08,¢3=2 r3=09,¢3=3
0 — — — — —
1 b6x(-)=- — — — —
2 6% (<)== BX ()=~ — — —
3 OHx . (-)=- Bx. ()=~ Ix (=)=~ — —
4 66X (-)=~ Bx.(-)= - IxX(~)=.—- — —_—
5 O6X.(=)=- X (-)=~ IX.(~)=.~ — —
6 6x.35=.210 Bx.(~)=-~- Ix.(-)=.— 210 1
7 6x.35=.210 .8x.35=.280 Ix (-)= .~ .280 2
8 .6 x.49 = 294 8x.35=.280 9x.35=1315 315 3
9 6x.63=.378 8x.49=.392 9x.35=.315 392 2
10 6 x.63=.378 .8 x.63=.504 9 x.49 = 441 504 2

The optimal solution is therefore given by m;* = 3, my* = 1 and m3* =2 with the maximum reliability 0.504.
33.13-5. Application in Continuous Systems

The dynamic programming approach can be applied to infinitely multistage systems also. The N-discrete
stages of a system may differ infinitesimally from each other, and stages may vary continuously as N — oo, A
model of continuous infinitely multistage process is analogous to forward recursion approach applicable to

discrete models as discussed earlier. A continnous model can be obtained through the passage of the discrete to
the continuous as given below. '
Analogy between Discrete and Continuous Systems

systems Discrete Continuous

1. Stage indexj=0,1,... ,N parametertp < <1
2. Decision variable d; d(r)
k3 State variable sj s(9)
4. Stage return 1, d; 1+ A

ge fisj-1.4d) [ ft.,s,dyds

t
5. Total return N j'lﬂ O d
A t,s, t
=t o

6. Stage transformation. si=T{sj-1,d) ds/dt=G(t,s, d)

Thus, the continuous system is of the form :
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. ;
Maximize z = I f(t,s,d)dr, subject to the condition

fo

ds )
—=G(@t,s,d), (rpst<n
dt
where s is an n-vectorin E" , d is an m-vectore” , and G denotes n functions g1, 82, -+ » 8-

With the prescribed value s(fp) = so, this is a typical problem of optimal control and calculus of variations.

Thus, there is a close relationship between dynamic programming, calculus of variations, and optimal
control. '

The forward recursion formula of dynamic programming for the continuous form is obtained below :

If the notation of the descrete problem :

Fi(sj—1) = d f’rl_?_l""dj (fvofn-1s---:0f)
is replaced by its continuous analogue
!
z(t,s)=m§1xj’ lf(r,s,d)dt,
S
then the discrete recursion formula
Fi(sj-1) = mdax G d)o Fj, 1(sp]
7
can be replaced by
t+ At
z(t,s)=mgx[j ﬂt,s,d)dt+z(r+At,s+As)]
!

These are fundamental equations occurring in the theory of optimal control.

[ 33.14. CHARACTERISTICS OF DYNAMIC PROGRAMMING PROBLEM l

The characteristics of dyanamic programming problem may be outlined as follows :
[JNTU (MCA lif) 2004; Delhi (Stat.) 96; (OR) 93]

1. The problem can be divided into stages, with a policy decision required at each stage.

2. Each stage has a number of states associated with it.

3. The effect of the policy decision at each stage is to transform the current state into a state associated
with the next stage. ; :

4. Given the current stage, an optimal policy for remaining stages is independent of the policy adopted
in the previous stages. ,

5. The solution procedure begins by finding an optimal policy for each state of the last stage.

6. A functional equation is available which identifies the optimal policy for each state with n stages
remaining, given the optimal policy for each state with (n — 1) stages left.

7. Using this functional equation, the solution procedure moves backward stage-by-stage, each time
finding the policy when starting at the initial stage.

SELF-EXAMINATION PROBLEMS
1. Use dynamic programming to find the value of
max z = y1 y2ya, subject to the constraints : yy + y2 + y3="5, andy, y2,¥320.
[JNTU (B. Tech.) 2003 (Type)]

Hint. f = max () and fo)=_ max {zifi.y(Xj-2)), j=1,2,3
[Hint. f;(x) z1=>)<(1( 1) () ogzini{,, 16~ 2y, j=1

[Ans. (5/3, 5/3, 5/3) with x(5) = (5/3)%]

2. Formulate the following problem as a dynamic programming problem.
Minimize z= (x; + 2)2 + XoX3 — (Xg — 5)2 subjectto Xy + Xp + X3 + X4 < 5,and Xy , X2, X3 , Xs are non-negative integers.
Find the optimum solution. What is the optimum solution if the right hand side of the cor:straintis 3 instead of 5 ?
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Solve the following problein by dynamic programming :
max n}:. 1(4d,, - nd,f), subject to the constraints n)} 1d,, =10, d,20.
[Ans. 8]
Hlustrate the dynamic programming appraoch by solving the following problem
max 12x13 + 27x23 + 14X33
in non-negative x;such that Ix=1,i=1,2,3.
(i) Develop the functional equation to determine m; (2 0) so as to maximize

n
Z= I_Z y M (pymp)™ subject to the constraints M+me+...+mp=M.

(i) Develop the functional equation to determine m, , mp, ..., mysothat
2
Zm;(p)” . .
~—msmaximumsuchthatm; ,my, ..., m,=M
™ " me " (Raj. Univ. (M. Phil.) 93)

(Ans. () my=0,m=0, ..., m,_,=0, Mp=M, and f, (M) = M (p,/ m)*]
Solve the following linear Programming problems by dynamic programming

(i) Maxz = 2x; + 3x, subject to the constraints : (i) Min z = x; + 3x; + 45, subject to
X=X, X1 +X%S3,X%,x%20 2x1 + 4x + 3x3 2 60, 3x, +2x3 + X3 2 60,
andxqy, Xz, x320 2x,+xz+3&290,andx1,xzx;;20

[AnS. x; =0, % =3, maxz = 9]

The total volume available in an aircraft for 3 types of item is 13 #t>. The unit volume of item Aiis 2 ft.3, that of item B is

3 ft.3and that of itemn Cis 2 . The cost of having a demand that occur when the systemis out of stock is Rs. 600 for item
A, Rs. 1200 for item B, and Rs. 800 for item C. The demand for each item is Poisson distribution with mean being 5, 2 and
2foritems A, Band C respectively. How many of each item should be loaded in order to minimize the expected stockout
costs ?

stocked so as to minimize the repeated shortage cost. Si 0 ! 2 3
Maximize hydro-electric power A(s), s = (s, , s, , s3), produced h 0 2 4 6
by building dams on three different river basins, where f 0 I 5 6
P(s) = h{s1) + fa(s2) + fy(s), 5 0 3 5 6
and fi(s) is the power generated from the h basin by -
investing Rs. s, The total budgetary provision is J 1 2 3 4
S1+ 5 +53<3. The functions f,, %, f; are given in the wi o] 3 4 6 W=19
following table. Integer solution of the problemis required. v 5 7 1
(Ans.8,0,2, 1] : :

Given four items j(= 1, 2, 3, 4) with weights w; per unit and values v; per unit. Find the positive integer quantity of each
item to be placed in a bag so that the total weight of the items does not exceed W and the total value is maximum. Take
the following numerical data :

[Ans.32,2,1,1] .

We have a bomber and two enemy targets. Araidon a target ‘A’ will result either in a fraction ry of the enemy’s resources

in Abeing destroyed or the bomber being shot down (before inflicting damage); the probability of the bomber surviving a

mission to A being p;. Target Bis similarly associated with a fraction r, and a probability p,. The enemy’s resources

initially are xat A and yat B. Finda functional equation to determine the optimal policy when the number of raids is limited
to Nand when the number can be inifinite, . '

Explain in brief the dynamic programming appraoch and pose the following problem on a dynamic programming problem

approach and solve.

A dealer places an order with his wholesaler on the first of each month and obtains delivery one month later. The cost of

holding inventory is c, per unit per month and the cost of shortage is ¢, per unit per month, shortages being carried over

from one month to the next. If the monthly demand x s a random variable with density function p(x), find the policy that
minimises the long-term average costs per month.

(i) A man is engaged in buying and selling identical items, each of which requires considerable storage space. The
buying and seliing prices are indicated inthe table below. He operates from a warehouse which has a capacity of 500
items. He can order on the 15th of each month, for delivery on the first day of the following month. During a month, he
can also sell any amount upto his total stock on hand.
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14.

15.

16.

January February March
Cost Prices (Rs.) 150 155 165
Sales Prices (Rs.) 165 165 185

If he starts the year with 200 items in stock, how much should he plan to purchase and sell each month, in order to
maximize his profit for the first quarter of the year ?

(i) Solve the above problem for the marked prices given below :
Jan (15) Feb(15) March(15) April (15) May (15) June(15)
Cost Prices (Rs.) : 155 150 155 155 150 150
Sales Prices (Rs.) 155 155 160 170 175 170
Maximize his profits for the half year.

An item have five months setling period with the probability dwtribution (given below) of selling in @ach month.
Probability distribution of seiling price in sach month.

Month
Price | 2 3 4 5
4 .10 05 .05 .05 .05
5 .16 .10 15 .05 25
6 20 A5 .30 35 30
7 .30 25 1S 25 20
8 15 .20 15 15 15
9 10 A5 .10 10 .05
10 .05 .10 10 .05 .00

(a) Calculate the expected price for each.

(b) Faced with these probability distributions for the price over the demand ‘season, use a method of dynamic
programming to determine an optimal selling policy.

The ABC corporation has nine salesmen who presently sell in three separate sales areas of Northern India. The

profitability for each salesman in the three sales areas as as follows :

No. of Salesman

] 0 1 2 3 4 5 6 7 8 9
Area 2 9 8 7 6 5 4 3 2 1 0
3 0 1 2 3 4 5 6 7 8 9 J

Profitability (in thousand of Rs.)

1 20 32 47 57 66 71 82 90 100 110
Area 2 135 125 115 104 93 82 71 60 50 40
3 50 61 72 84 97 109 120 131 140 150

Determine the optimum allocation of salesmen in order to maximize profits.

The work load for the local Job shop is subject to considerable seasonal fluctuation. However, machine operators are
difficult to hire and costly to train, so the manager is reluctant to lay-off workers during the stack seasons. He is likewise
reluctant to maintain his peak season pay roll when it is not required. Furthermore, he is definitly opposed to overtime
work on a regular basis. Since all work is done to custom orders if not possible to build up inventories during slack
seasons. Therefore, the manager is in a dilemma as to what his policy should be regarding employment levels.
The following estimates are given for the man-power requirements during the four seasons of the year for the
foreseeable future : )

Season Spring Summer Autumn Winter Spring

Requirement : 255 220 240 200 255
Employment will not be permitted to fall below these levels. Any employment above these levels is wasted at an
approximated cost of Rs. 2,000 per man per season. itis also estimated that the hiring and firing costs are such that thz
total cost of changing the level of employment from one season 1o the nextis Rs. 200 times the square of the differencs

in employment levels. Fractional levels of employment are possible because of a few part time employees, and the
above cost data also apply on a fractional basis.

The manager needs to determine what employment level should be in each season 0 minimize total cost.
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UNIT 5: DYNAMIC PROGRAMMING / 113

In an N-stage rocket thelweight Wofthe thstate is a function of the velocity increase vithat takes place during the firing
of that stgge and t{\e weight w; of the burnt out i-1 stages, i.e. [ W, ( vj, w)]. The final velocity to be attained after the
last burning stage is Vand the total weight of the rocket is to be minimum, Identify the space and decision variables and
the_ stage transformation function in the problem. Obtain the recursion equation for optimization and show that minimum
weight s given by

V)= "‘}21 (Wa{w, - 1(V- v} + N-1(V-wy)

We have a machine that deteriorates with age and so we have to dacide about the replacement policy. We have to own
such a machine during each of the next5 years. The operating cost o(j) of a machine iyears old at the beginning of the
year; trade in value f()) received when such a machine is traded for a new machine at the start of the year and s(j), the
salvage value recsived for a machine that have just tumed age /at the end of 5 years are given below :

i 2 3 4

L= ! 5 6
i) = 10 13 20 40 70 100 100
(i) = — 32 21 11 5 0 0
() = - 25 17 8 0 0 0

Ifa new machine costs 50 and we have now a machine which is two years old; whatis the optimum policy of replacement
? Solve the problem by Dynamic Programming.

man-years of life. (For a particular country, this measure equals the country’s incn.'easeq life expectancy in years times its
population). The following table gives the estimated additional man-years of life (in multiple of 1,000) for each country for
each possible allocation of medical items.

No. of Medical Teams Thousands of Additioan! Man-years of Life

Country 1 ' Country?2 Country3
0 0 0 0
1 45 20 50
2 70 45 70
3 90 75 80
4 105 110 100
5 120 150 130

Determine how many teams to be allocated to ‘each country for maximum effectiveness. Also form the recursive

equation. . . '
[Ans. Oneteam to country 1, three tasams to country 2, and one team to country 3; and maximum effectiveness is 170)

An investor has Rs. 6000 to invest. This amount .
can be invested in any of three ventures |Amountinvested Return from Venture
available to him. But, he must invest in units of A B C
Rs. 1000. The potential retumn from investment P o 0 0
in any one venture depends upon the amount :
invested according to the following table (all 1 0.5 1.5 1.2
figures in thousands) 2 1.0 20 24
The investor wishes to imvest Rs. 6000 so 3 30 22 25
that the return from investment is . .
maximum. Formulate the above problem as 4 3.1 23 26
a dynamic programming plroblem and find 5 32 2.4 (27
the optimum investment po icy.
[Ang. Rs. 3000in A, Rs. 1000 in B 6 33 25 2 8

and Rs. 2000 in C; Max. retum Rs. 6900]. -
Using dynamic programming approach, solve [
i

the reliability problem with the following data :
The total capital available is 10 (in units of

thousand rupees) L

[Ans. Optimal solution :
M;=3, M=1and M3=2 with maximum
reliability as 0.576]
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